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This text describes a mathematical model of a strut finite element for isotropic hyperelastic 

materials. The invariants of the Right Cauchy-Green deformation tensor are written in terms 

of nodal displacements. The equilibrium problem is formulated as an unconstrained nonlinear 

programming problem, where the objective function is the total potential energy of the 

structure and the nodal displacements are the unknowns. The constraint for incompressibility 

is satisfied exactly, thereby eliminating the need for a penalty function. The results of the 

examples calculated by the proposed mathematical model show five significant digits in 

agreement when compared with commercial finite element analysis software. 

 

1 Introduction 

 

This text describes a mathematical model of a strut finite element for isotropic hyperelastic 

materials. The deformation gradient tensor is written in terms of nodal displacements. The 

invariants of the Right Cauchy-Green deformation tensor are written in terms of nodal 

displacements. The constraint for incompressibility is satisfied exactly, thereby eliminating the 

need for a penalty function. The equilibrium problem is formulated as an unconstrained 

nonlinear programming problem, where the objective function is the total potential energy of 

the structure and the nodal displacements are the unknowns. The total potential energy is 

minimized using a quasi-Newton method. 

 

The total potential energy minimization method for the analysis of cable structures was first 

described by (Buchholdt, 1966). The minimization of the total potential energy to find an 

equilibrium for cable network analysis was used by (Coyette and Guisset, 1988), where the 

authors noticed that a better solution could be achieved by resorting to the basic energy 

concepts underlying the stiffness approach. The strain energy density function (strain energy 

per unit of undeformed volume) representing incompressible hyperelastic materials usually 

incorporates a penalty function to account for the incompressibility. The augmented Lagrange 

method was proposed by (Brinkhues et al., 2013) to avoid numerical difficulties arising from 

the use of a penalty parameter. A review of the augmented Lagrangian and penalty methods 

that have been successfully employed to enforce incompressibility, which focus on cardiac 

mechanics, was presented by (Hadjicharalambous et al., 2014). In the literature, a nearly 

incompressible material is used to denote a material that is incompressible, but its numerical 

treatment involves a small volumetric deformation. The importance of a better way to tackle 

incompressibility relies on the fact that incompressible hyperelastic material models have been 

widely used for modelling the mechanical behaviour of soft biological tissues. The work of 

(Mustafy et al., 2014) noticed that articular ligaments were mostly modeled with strut elements. 

A detailed review of Isotropic incompressible hyperelastic material models used for modelling 

soft biological tissues was presented by (Wex et al., 2015). 

 

2 Notation 

 

The following notation is used for vector and tensor algebra: A Greek letter represents a scalar. 

A lower case letter represents a point or a column vector in a three dimensional Cartesian space. 



An upper case letter represents a matrix or a tensor. For clarity, the summation convention will 

not be used in this text. 

 

3 Strut Element Definition 

 

Figure 1 shows the geometry of the strut element in a three dimensional Cartesian space. The 

nodes are labeled 1 and 2. The nodal displacements transform the element from its undeformed 

or initial state to its deformed or final state. Notice that the four vectors may be non-coplanar 

vectors. Since the vectors form a closed loop, the vector sum of all four vectors must be zero. 

The vectors u and u  are unit vectors in the direction of the element in the initial and final state, 

respectively. The scalars   and   are the lengths of the element in the initial and final state, 

respectively. The nodal displacements 1d  and 2d move points 1x  and 2x in the initial state to 

points 1x and 2x in the final state, respectively. 

 

 
Figure 1 Strut Element 

 

The relationship between the vectors describing the strut element geometry can be written as 

follows: 
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Letting, 
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The relationship between the vectors describing the strut element geometry becomes: 

 

u u z     

 

3.1 Convex Combination of Vertexes 

 

The convex combination of vertexes in the deformed state is given by: 
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Considering that a point in the strut element can be described by the same convex combination 

of vertexes in the undeformed and deformed states, a point in the deformed state can be written 

as: 
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3.2 Alpha Coefficients 

 

The alpha coefficients can be determined through the convex combination of vertexes in the 

undeformed state as: 
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3.3 Geometric Interpretation 

 

Each alpha coefficient corresponds to a division of a fraction of the undeformed length by the 

total undeformed length. Figure 2 shows point x  as a convex combination of vertexes in the 

undeformed state. 

 

 
Figure 2 Convex combination of vertexes in the undeformed state 
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Notice that the non-negative constraint for 1  is satisfied. A corresponding expression can be 

written for 2 . 

 

4 Deformation Gradient Tensor 

 

The convex combination of vertexes in the deformed state can be written as: 
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This convex combination of vertexes is a deformation mapping that transforms points from the 

undeformed state to the deformed state. The derivatives of the deformation mapping can be 

written as: 
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The components of the deformation gradient tensor F  can be written as: 
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The deformation gradient tensor F  can be written as: 

 
TF I zu   

 

However, the previous expression require additional terms to account for the deformation 

orthogonal to the element’s line. These additional terms will satisfy the questions raised by 

(Kaklamanis and Spiliopoulos, 2007), which points that the effect of the change in the cross 

sectional area of the strut element during its motion is not usually formalized on theoretical 

grounds. 

 

Consider unit vectors v  and w , which are orthogonal to u  and unit vectors v  and w , which 

are orthogonal to u , such that: 

 
w u v   

 
w u v   

 

The additional terms to account for the deformations orthogonal to the element’s line must 

vanish when the expression is applied to vector u . Considering b  and c  as vectors, one 

possible expression can be written as: 

 
T T TF I zu bv cw     

 

Additionally, applying this expression to an undeformed length must result in the 

corresponding deformed length. In the direction parallel to the element’s line: 

 

 F u u z u       

 

Consider the scalars   and   equal to the thickness of the element in the undeformed state 

and deformed state respectively. Letting, 
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In the v  direction orthogonal to the element’s line: 

 

 F v v b     

 

 F v v b v v       

 

In the w  direction orthogonal to the element’s line: 

 

 F w w c     

 

 F w w c w w       

 

Then, the deformation gradient tensor can be written as: 
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The invariant 3 of F  can be interpreted as the deformed volume divided by the undeformed 

volume. 
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5 Right Cauchy-Green Deformation Tensor 

 

The right Cauchy-Green deformation tensor C  is given in terms of the deformation gradient 

tensor F  as: 

 
TC F F  

 

The invariants can be written as: 
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6 Strain Energy Density Function 

 

Consider   as the strain energy density function. 
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The derivative of   with respect to the invariant i of C  is denoted by i  and can be written 

as: 
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Notice that the strain energy density function and its derivatives with respect to the invariants 

of the right Cauchy-Green deformation tensor depend on the material. 

 

7 Total Potential Energy 

 

Consider   as the area of the element in the undeformed state and   as the work done by 

external forces. The total potential energy   can be written as a function of the unknown 

displacements by the summation of the strain energy over all elements minus the work done 

by the external forces: 

 

elements

     

 

The gradient of the total potential energy can be written as a function of the unknown 

displacements by the summation of the gradient of the strain energy function with respect to 
the nodal displacements over all the elements minus the gradient of the work done by the 

external forces with respect to the nodal displacements. 
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For each element, the gradient of the strain energy function with respect to the nodal 

displacements of the element can be calculated by using the chain rule as: 
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8 Cauchy Stress Tensor 

 

According to (Bonet and Wood, 2008), for the case of isotropic hyperelasticity, the Cauchy 

stress tensor can be written as: 
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Therefore, 
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9 Incompressibility 

 

A hydrostatic pressure can be applied to an incompressible solid without changing its shape. 

The strain energy density is a function of only two invariants, but it can be written in the 

following way to produce an unknown hydrostatic pressure in the Cauchy stress tensor. This 

unknown hydrostatic pressure will be determined by a boundary condition on the principal 

stress orthogonal to the element’s line. 
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9.1 Thickness 

 

By setting invariant 3 of the deformation gradient tensor F  equal to 1, the thickness of the 

element in the deformed state can be written as: 
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9.2 Stress Orthogonal to the Element’s Line 

 

The traction vector related to a unit vector orthogonal to the element’s line in the deformed 

state can be written as: 
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The unit vector v  is a principal direction associated with the principal stress given by: 
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The boundary condition implies that this stress is equal to zero. Therefore, the Cauchy stress 

tensor can be written as: 
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9.3 Stress Parallel to the Element’s Line 

 

The traction vector related to the unit vector parallel to the element’s line in the deformed state 

can be written as: 
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The unit vector u  is a principal direction associated with the principal stress given by: 
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However, 
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Therefore, the principal stress can be written as: 
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9.4 Invariants of the Right Cauchy-Green Deformation Tensor 

 

The thickness of the element in the deformed state can be removed from the expressions of the 

invariants of the right Cauchy-Green deformation tensor C . The invariants of the right 

Cauchy-Green deformation tensor and its derivatives with respect to the nodal displacements 

can be written as: 
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9.5 Severe Cancellation 

 

Inaccuracy often results from severe cancellation that occurs when nearly equal values are 

subtracted as described by (Goldberg, 1991). Severe cancellation can usually be eliminated by 

algebraic reformulation. To avoid severe cancellation, the following expressions should be 

used in a computer code. 
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9.5.1 Strain energy per unit undeformed volume 

 

The derivative of the strain energy with respect to the nodal displacements can be written as: 
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9.5.2 Cauchy stress 

 

The Cauchy stress parallel to the element’s line can be written as: 
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10 Compressibility 

 

The strain energy density is a function of three invariants. 
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10.1 Thickness 

 

Notice that the thickness of a specific element is an unknown associated only with this element. 

Consequently, the derivative of the total potential energy with respect to the thickness of a 

specific element involves only the strain energy corresponding to this element. 
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However, 
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The thickness can be found by equating the derivative of the strain energy of the element with 

respect to its thickness equal to zero. 

 

 
 

2 2 2 1
1 2 3

2 3

0 2 1 2 0
2 1 2

T T

T T
u z z z

u z z z


     

  


        

    
 

 

 

10.2 Stress orthogonal to the element’s line 

 

The traction vector related to a unit vector orthogonal to the element’s line in the deformed 

state can be written as: 
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The unit vector v  is a principal direction associated with a principal stress given by: 
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Notice that the minimum of the total potential energy implies that the stress orthogonal to the 

element’s line is equal to zero. 

 

10.3 Stress parallel to the element’s line 

 

The traction vector related to the unit vector parallel to the element’s line in the deformed state, 

can be written as: 
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The unit vector u  is a principal direction associated with a principal stress given by: 
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10.4 Invariants of the right Cauchy-Green deformation tensor 

 

Unconstrained minimization requires the following variable transformation to ensure a positive 

thickness in the deformed state. 
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The invariants of the right Cauchy-Green deformation tensor and its derivatives with respect 

to the nodal displacements and to the variable associated with the thickness of the element can 

be written as: 
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11 Unconstrained Nonlinear Programming Problem 

 

A computer code was implemented following algorithms described by (Gill and Murray, 1974) 

and (Nocedal and Wright, 2006). It uses the limited memory BFGS quasi-Newton method in 

order to tackle large scale problems. The line search procedure is accomplished through cubic 

interpolation. The algorithm will find a local minimum point or in rare cases a saddle point. It 

can be easily added in the computer program implementation, the possibility of differentiating 

a local minimum point from a saddle point, and in the latter case proceed in the search for a 

local minimum using a direction of negative curvature. The minimization of the total potential 

energy approach to find equilibrium does not require preventing rigid body motion for self-

equilibrated loading. This approach to find equilibrium can also replace the dynamic relaxation 

method as used by (Grancicova and Brodniansky, 2015). The source code written in Ada is 

available for download from www.arcaro.org. The script file for AutoCAD generated by the 

computer code allows the visualization of the undeformed and deformed shapes. 

 

12 Examples 

 

The blue color represents a strut element under tension while the red color represents a strut 

element under compression. The strut elements have area equal to 1. The examples consider 

an incompressible Mooney-Rivlin strain energy density function for a rubber-like material. The 

strain energy density function for this material is given by: 
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The examples were compared with the ABAQUS finite element analysis software (Dassault 

Systemes, 2016), showing the maximum relative error for node displacement and for element 

stress. The displacement of each node was considered as a vector and the Euclidean norm was 

used to measure the relative error for vectors. ABAQUS uses the following expression for the 

strain energy density function of incompressible Mooney-Rivlin material, where   is the 

penalty parameter to enforce incompressibility. 
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The parameters used in the limited memory BFGS with a line search procedure through cubic 

interpolation are: (1) The maximum number of iterations allowed is usually 10 times the 

number of unknowns. (2) The maximum value allowed for the infinity norm of the gradient. 

The iterations terminate if the infinity norm of the gradient becomes less than or equal to this 

value. (3) The maximum number of cubic interpolations allowed is usually 20. (4) The accuracy 

of the line search is usually 0.1. (5) The number of BFGS corrections kept is usually between 

3 and 20. 

 

Example 1: The structure is defined by 4 nodes and 6 strut elements in the shape of a 

tetrahedron inscribed in a sphere of radius equal to 1. The basis of the tetrahedron is parallel to 

the xy-plane. The origin of the coordinate system is located at the geometric centroid of the 

nodes. Table 1 shows the node coordinates and the zero displacement constraints to prevent 

rigid body movements. The parameters for the node coordinates are given by the following 

expressions. 
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Table 1 Node coordinates and displacement constraints 

node x y z constraints 

1 
1  2  4  z 

2 
1  2  4  z 

3 0 
3  4  x, z 

4 0 0 1 x, y 

 

Each node has an applied force equal to the node's coordinates. This loading will make the 

tetrahedron expands away from its geometric centroid. Figure 3 shows the initial and final 

shapes. 



 
Figure 3 Initial and final shapes 

 

Table 2 shows the node displacement and the element stress that resulted in the maximum 

relative errors of 2.5E-06 and 2.6E-06 respectively when compared with ABAQUS. 

 

Table 2 Node displacement and element stress 

Node Displ X  Displ Y Displ Z 

2 2.542243E-01 -1.467765E-01 0.000000E+00 

Elem Node Node Stress 

1 1 2 5.353604E-01 

 

Example 2: The structure is defined by 8 nodes and 12 strut elements in the shape of a 

hexahedron inscribed in a sphere of radius equal to 1. The basis of the hexahedron is parallel 

to the xy-plane. The origin of the coordinate system is located at the geometric centroid of the 

nodes. Table 3 shows the node coordinates and the zero displacement constraints to prevent 

rigid body movements. The parameters for the node coordinates are given by the following 

expressions. 
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Table 3 Node coordinates and displacement constraints 

node x y z constraints 

1 
1   0 

2   y, z 

2 0 
1  2  x, z 

3 
1  0 

2  y, z 

4 0 
1  2  x, z 

5 
1  0 

2  y 

6 0 
1  2  x 

7 
1  0 

2  y 

8 0 
1  2  x 

 

Each node has an applied force equal to the node's coordinates. This loading will make the 

hexahedron expands away from its geometric centroid. Figure 4 shows the initial and final 

shapes. 

 



 
Figure 4 Initial and final shapes 

 

Table 4 shows the node displacement and the element stress that resulted in the maximum 

relative errors of 4.6E-06 and 5.6E-06 respectively when compared with ABAQUS. 

 

Table 4 Node displacement and element stress 

Node Displ X Displ Y Displ Z 

8 0.000000E+00 3.785512E-01 5.353523E-01 

Elem Node Node Stress 

1 1 2 8.450264E-01 

 

Example 3: The structure is defined by 6 nodes and 12 strut elements in the shape of an 

octahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is 

located at the geometric centroid of the nodes. There are no constraints to prevent rigid body 

movements. Table 5 shows the node coordinates and, for ABAQUS, the zero displacement 

constraints to prevent rigid body movements. 

 

Table 5 Node coordinates and displacement constraints 

node x y z constraints 

1 -1 0 0 y, z 

2 0 -1 0 x, z 

3 1 0 0 y, z 

4 0 1 0 x, z 

5 0 0 -1 x, y 

6 0 0 1 x, y 

 

Each node has an applied force equal to the node's coordinates. This loading will make the 

octahedron expands away from its geometric centroid. Figure 5 shows the initial and final 

shapes. 

 

 
Figure 5 Initial and final shapes 

 



Table 6 shows the node displacement and the element stress that resulted in the maximum 

relative errors of 1.5E-06 and 1.8E-06 respectively when compared with ABAQUS. 

 

Table 6 Node displacement and element stress 

Node Displ X Displ Y Displ Z 

6 0.000000E+00 0.000000E+00 2.649892E-01 

Elem Node Node Stress 

1 1 2 4.472412E-01 

 

Example 4: The structure is defined by 20 nodes and 30 strut elements in the shape of a 

dodecahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is 

located at the geometric centroid of the nodes. There are no constraints to prevent rigid body 

movements. Table 7 shows the node coordinates and, for ABAQUS, the zero displacement 

constraints to prevent rigid body movements. The parameters for the node coordinates are given 

by the following expressions. 
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Table 7 Node coordinates and displacement constraints 

node x y z constraints 

1 0 
2   

1  x 

2 0 
2  

1  x 

3 
3   

3  
3   

4 
3  3  3   

5 
3  3  3   

6 
3  3  3   

7 
1   0 

2  y 

8 
1  0 

2  y 

9 
2  1  0 z 

10 
2  1  0 z 

11 
2  1  0 z 

12 
2  1  0 z 

13 
1  0 

2  y 

14 
1  0 

2  y 

15 
3  3  3   

16 
3  3  3   

17 
3  3  3   

18 
3  3  3   

19 0 
2  1  x 

20 0 
2  1  x 

 



Each node has an applied force equal to the node's coordinates. This loading will make the 

dodecahedron expands away from its geometric centroid. Figure 6 shows the initial and final 

shapes. ABAQUS was not able to run this example. 

 

 
Figure 6 Initial and final shapes 

 

Example 5: The structure is defined by 12 nodes and 30 strut elements in the shape of an 

icosahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is 

located at the geometric centroid of the nodes. There are no constraints to prevent rigid body 

movements. Table 8 shows the node coordinates and, for ABAQUS, the zero displacement 

constraints to prevent rigid body movements. The parameters for the node coordinates are given 

by the following expressions. 
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Table 8 Node coordinates and displacement constraints 

node x y z constraints 

1 
1   0 

2  y 

2 
1  0 

2  y 

3 0 
2  1  x 

4 0 
2  1  x 

5 
2   1  0 z 

6 
2  1  0 z 

7 
2  1  0 z 

8 
2  1  0 z 

9 0 
2  1  x 

10 0 
2  1  x 

11 
1  0 

2  y 

12 
1  0 

2  y 

 

There are two loadings: (1) each node has an applied force equal to the node's coordinates and 

(2) each node has an applied force equal to the negative node's coordinates. These loadings will 



make the icosahedron expands or shrinks away from its geometric centroid. Figure 7 shows the 

initial shape on the left and the final shapes on the right. 

 

 
Figure 7 Initial and final shapes 

 

The structure expands. Table 9 shows the node displacement and the element stress that 

resulted in the maximum relative errors of 2.0E-06 and 2.2E-06 respectively when compared 

with ABAQUS. 

 

Table 9 Node displacement and element stress 

Node Displ X Displ Y Displ Z 

12 -1.511947E-01 0.000000E+00 -2.446382E-01 

Elem Node Node Stress 

1 1 2 4.898281E-01 

 

The structure shrinks. Table 10 shows the node displacement and the element stress that 

resulted in the maximum relative errors of 1.6E-06 and 1.4E-06 respectively when compared 

with ABAQUS. 

 

Table 10 Node displacement and element stress 

Node Displ X Displ Y Displ Z 

1 -1.183029E-01 0.000000E+00 -1.914181E-01 

Elem Node Node Stress 

1 1 2 -2.948178E-01 

 

Example 6: The structure is defined by 468 nodes and 1332 strut elements in the shape of a 

cylinder with diameter equal to 1 and height equal to 1. The cylinder was divided into 36 equal 

parts along its circumference and into 12 equal parts along its height. The origin of the 

coordinate system is located at the geometric centroid of the nodes. The displacements for the 

nodes located at the top and bottom circumferences were imposed equal to 0. Each node has 

an applied force equal to the node's coordinates. This loading will make the cylinder expands 

away from its geometric centroid. The cylinder expands symmetrically while keeping the nodes 

located at the top and bottom circumferences fixed. Figure 8 shows the initial and final shapes. 

 



 
Figure 8 Initial and final shapes 

 

Table 11 shows the node displacement and the element stress that resulted in the maximum 

relative errors of 4.0E-06 and 1.4E-05 respectively when compared with ABAQUS. 

 

Table 11 Node displacement and element stress 

Node Displ X Displ Y Displ Z 

208 -3.383873E-14 -4.549997E-01 -4.748185E-02 

Elem Node Node Stress 

470 37 73 1.044470E+00 

 

Example 7: The structure is defined by 468 nodes and 900 strut elements in the shape of a 

cylinder with diameter equal to 1 and height equal to 1. The cylinder was divided into 36 equal 

parts along its circumference and into 12 equal parts along its height. The origin of the 

coordinate system is located at the geometric centroid of the nodes. There are no constraints to 

prevent rigid body movements. For ABAQUS, the nodes along the yz plane can not move on 

the x direction, the nodes along the xz plane can not move on the y direction, and the nodes 

along the middle circumference can not move along the z direction. Each node located at the 

top and bottom circumferences has an applied force equal to the node's coordinates. This 

loading will make the top and bottom circumferences expand away from the cylinder's 

geometric centroid. The final surface is symmetrical about the z-axis. Figure 9 shows the initial 

and final shapes. ABAQUS was not able to run this example. 

 

 
Figure 9 Initial and final shapes 

 

Conclusions 

 

The results of the examples calculated by the proposed mathematical modeling show five 

significant digits in agreement when compared with the ABAQUS FEA software. The 

advantages of using a quasi-Newton method to minimize the total potential energy are: It is not 



necessary to derive the stiffness matrix expressions; it is not necessary to solve any system of 

equations; it does not require preventing rigid body motion for self-equilibrated loading. The 

source and executable computer codes are available for download from http://www.arcaro.org/. 

The computer code generates a script file for AutoCAD. 
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