[bookmark: _GoBack]A STRUT FINITE ELEMENT FOR EXACT ISOTROPIC HYPERELASTIC ANALYSIS
[bookmark: _Toc38738384][bookmark: _Toc38775106]
Vinicius Arcaro

Keywords: Hyperelasticity, Incompressibility, Minimization, Nonlinear, Finite element.

This text describes a mathematical model of a strut finite element for isotropic hyperelastic materials. The invariants of the Right Cauchy-Green deformation tensor are written in terms of nodal displacements. The equilibrium problem is formulated as an unconstrained nonlinear programming problem, where the objective function is the total potential energy of the structure and the nodal displacements are the unknowns. The constraint for incompressibility is satisfied exactly, thereby eliminating the need for a penalty function. The results of the examples calculated by the proposed mathematical model show five significant digits in agreement when compared with commercial finite element analysis software.

1 Introduction

This text describes a mathematical model of a strut finite element for isotropic hyperelastic materials. The deformation gradient tensor is written in terms of nodal displacements. The invariants of the Right Cauchy-Green deformation tensor are written in terms of nodal displacements. The constraint for incompressibility is satisfied exactly, thereby eliminating the need for a penalty function. The equilibrium problem is formulated as an unconstrained nonlinear programming problem, where the objective function is the total potential energy of the structure and the nodal displacements are the unknowns. The total potential energy is minimized using a quasi-Newton method.

The total potential energy minimization method for the analysis of cable structures was first described by (Buchholdt, 1966). The minimization of the total potential energy to find an equilibrium for cable network analysis was used by (Coyette and Guisset, 1988), where the authors noticed that a better solution could be achieved by resorting to the basic energy concepts underlying the stiffness approach. The strain energy density function (strain energy per unit of undeformed volume) representing incompressible hyperelastic materials usually incorporates a penalty function to account for the incompressibility. The augmented Lagrange method was proposed by (Brinkhues et al., 2013) to avoid numerical difficulties arising from the use of a penalty parameter. A review of the augmented Lagrangian and penalty methods that have been successfully employed to enforce incompressibility, which focus on cardiac mechanics, was presented by (Hadjicharalambous et al., 2014). In the literature, a nearly incompressible material is used to denote a material that is incompressible, but its numerical treatment involves a small volumetric deformation. The importance of a better way to tackle incompressibility relies on the fact that incompressible hyperelastic material models have been widely used for modelling the mechanical behaviour of soft biological tissues. The work of (Mustafy et al., 2014) noticed that articular ligaments were mostly modeled with strut elements. A detailed review of Isotropic incompressible hyperelastic material models used for modelling soft biological tissues was presented by (Wex et al., 2015).

2 Notation

The following notation is used for vector and tensor algebra: A Greek letter represents a scalar. A lower case letter represents a point or a column vector in a three dimensional Cartesian space. An upper case letter represents a matrix or a tensor. For clarity, the summation convention will not be used in this text.

3 Strut Element Definition

Figure 1 shows the geometry of the strut element in a three dimensional Cartesian space. The nodes are labeled 1 and 2. The nodal displacements transform the element from its undeformed or initial state to its deformed or final state. Notice that the four vectors may be non-coplanar vectors. Since the vectors form a closed loop, the vector sum of all four vectors must be zero. The vectors and are unit vectors in the direction of the element in the initial and final state, respectively. The scalars and are the lengths of the element in the initial and final state, respectively. The nodal displacements and move points and in the initial state to points and in the final state, respectively.

[image:]
Figure 1 Strut Element

The relationship between the vectors describing the strut element geometry can be written as follows:

Letting,

The relationship between the vectors describing the strut element geometry becomes:

3.1 Convex Combination of Vertexes

The convex combination of vertexes in the deformed state is given by:

Considering that a point in the strut element can be described by the same convex combination of vertexes in the undeformed and deformed states, a point in the deformed state can be written as:

3.2 Alpha Coefficients

The alpha coefficients can be determined through the convex combination of vertexes in the undeformed state as:

3.3 Geometric Interpretation

Each alpha coefficient corresponds to a division of a fraction of the undeformed length by the total undeformed length. Figure 2 shows point as a convex combination of vertexes in the undeformed state.

[image:]
Figure 2 Convex combination of vertexes in the undeformed state

Notice that the non-negative constraint for is satisfied. A corresponding expression can be written for.

[bookmark: _Toc38738390][bookmark: _Toc38775112][bookmark: _Toc38907784][bookmark: _Toc38908105][bookmark: _Toc38909330]4 Deformation Gradient Tensor

The convex combination of vertexes in the deformed state can be written as:

This convex combination of vertexes is a deformation mapping that transforms points from the undeformed state to the deformed state. The derivatives of the deformation mapping can be written as:

The components of the deformation gradient tensor can be written as:

The deformation gradient tensor can be written as:

However, the previous expression require additional terms to account for the deformation orthogonal to the element’s line. These additional terms will satisfy the questions raised by (Kaklamanis and Spiliopoulos, 2007), which points that the effect of the change in the cross sectional area of the strut element during its motion is not usually formalized on theoretical grounds.

Consider unit vectors and , which are orthogonal to and unit vectors and , which are orthogonal to , such that:

The additional terms to account for the deformations orthogonal to the element’s line must vanish when the expression is applied to vector . Considering and as vectors, one possible expression can be written as:

Additionally, applying this expression to an undeformed length must result in the corresponding deformed length. In the direction parallel to the element’s line:

Consider the scalars and equal to the thickness of the element in the undeformed state and deformed state respectively. Letting,

In the direction orthogonal to the element’s line:

In the direction orthogonal to the element’s line:

Then, the deformation gradient tensor can be written as:

The invariant 3 of can be interpreted as the deformed volume divided by the undeformed volume.

5 Right Cauchy-Green Deformation Tensor

The right Cauchy-Green deformation tensor is given in terms of the deformation gradient tensor as:

The invariants can be written as:

6 Strain Energy Density Function

Consider as the strain energy density function.

The derivative of with respect to the invariant i of is denoted by and can be written as:

Notice that the strain energy density function and its derivatives with respect to the invariants of the right Cauchy-Green deformation tensor depend on the material.

7 Total Potential Energy

Consider as the area of the element in the undeformed state and as the work done by external forces. The total potential energy can be written as a function of the unknown displacements by the summation of the strain energy over all elements minus the work done by the external forces:

The gradient of the total potential energy can be written as a function of the unknown displacements by the summation of the gradient of the strain energy function with respect to the nodal displacements over all the elements minus the gradient of the work done by the external forces with respect to the nodal displacements.

For each element, the gradient of the strain energy function with respect to the nodal displacements of the element can be calculated by using the chain rule as:

8 Cauchy Stress Tensor

According to (Bonet and Wood, 2008), for the case of isotropic hyperelasticity, the Cauchy stress tensor can be written as:

However,

Therefore,

9 Incompressibility

A hydrostatic pressure can be applied to an incompressible solid without changing its shape. The strain energy density is a function of only two invariants, but it can be written in the following way to produce an unknown hydrostatic pressure in the Cauchy stress tensor. This unknown hydrostatic pressure will be determined by a boundary condition on the principal stress orthogonal to the element’s line.

9.1 Thickness

By setting invariant 3 of the deformation gradient tensor equal to 1, the thickness of the element in the deformed state can be written as:

9.2 Stress Orthogonal to the Element’s Line

The traction vector related to a unit vector orthogonal to the element’s line in the deformed state can be written as:

The unit vector is a principal direction associated with the principal stress given by:

The boundary condition implies that this stress is equal to zero. Therefore, the Cauchy stress tensor can be written as:

9.3 Stress Parallel to the Element’s Line

The traction vector related to the unit vector parallel to the element’s line in the deformed state can be written as:

The unit vector is a principal direction associated with the principal stress given by:

However,

Therefore, the principal stress can be written as:

9.4 Invariants of the Right Cauchy-Green Deformation Tensor

The thickness of the element in the deformed state can be removed from the expressions of the invariants of the right Cauchy-Green deformation tensor . The invariants of the right Cauchy-Green deformation tensor and its derivatives with respect to the nodal displacements can be written as:

9.5 Severe Cancellation

Inaccuracy often results from severe cancellation that occurs when nearly equal values are subtracted as described by (Goldberg, 1991). Severe cancellation can usually be eliminated by algebraic reformulation. To avoid severe cancellation, the following expressions should be used in a computer code.

9.5.1 Strain energy per unit undeformed volume

The derivative of the strain energy with respect to the nodal displacements can be written as:

9.5.2 Cauchy stress

The Cauchy stress parallel to the element’s line can be written as:

10 Compressibility

The strain energy density is a function of three invariants.

10.1 Thickness

Notice that the thickness of a specific element is an unknown associated only with this element. Consequently, the derivative of the total potential energy with respect to the thickness of a specific element involves only the strain energy corresponding to this element.

However,

Therefore,

The thickness can be found by equating the derivative of the strain energy of the element with respect to its thickness equal to zero.

10.2 Stress orthogonal to the element’s line

The traction vector related to a unit vector orthogonal to the element’s line in the deformed state can be written as:

The unit vector is a principal direction associated with a principal stress given by:

However,

Notice that the minimum of the total potential energy implies that the stress orthogonal to the element’s line is equal to zero.

10.3 Stress parallel to the element’s line

The traction vector related to the unit vector parallel to the element’s line in the deformed state, can be written as:

The unit vector is a principal direction associated with a principal stress given by:

However,

10.4 Invariants of the right Cauchy-Green deformation tensor

Unconstrained minimization requires the following variable transformation to ensure a positive thickness in the deformed state.

The invariants of the right Cauchy-Green deformation tensor and its derivatives with respect to the nodal displacements and to the variable associated with the thickness of the element can be written as:

11 Unconstrained Nonlinear Programming Problem

A computer code was implemented following algorithms described by (Gill and Murray, 1974) and (Nocedal and Wright, 2006). It uses the limited memory BFGS quasi-Newton method in order to tackle large scale problems. The line search procedure is accomplished through cubic interpolation. The algorithm will find a local minimum point or in rare cases a saddle point. It can be easily added in the computer program implementation, the possibility of differentiating a local minimum point from a saddle point, and in the latter case proceed in the search for a local minimum using a direction of negative curvature. The minimization of the total potential energy approach to find equilibrium does not require preventing rigid body motion for self-equilibrated loading. This approach to find equilibrium can also replace the dynamic relaxation method as used by (Grancicova and Brodniansky, 2015). The source code written in Ada is available for download from www.arcaro.org. The script file for AutoCAD generated by the computer code allows the visualization of the undeformed and deformed shapes.

12 Examples

The blue color represents a strut element under tension while the red color represents a strut element under compression. The strut elements have area equal to 1. The examples consider an incompressible Mooney-Rivlin strain energy density function for a rubber-like material. The strain energy density function for this material is given by:

The examples were compared with the ABAQUS finite element analysis software (Dassault Systemes, 2016), showing the maximum relative error for node displacement and for element stress. The displacement of each node was considered as a vector and the Euclidean norm was used to measure the relative error for vectors. ABAQUS uses the following expression for the strain energy density function of incompressible Mooney-Rivlin material, where is the penalty parameter to enforce incompressibility.

The parameters used in the limited memory BFGS with a line search procedure through cubic interpolation are: (1) The maximum number of iterations allowed is usually 10 times the number of unknowns. (2) The maximum value allowed for the infinity norm of the gradient. The iterations terminate if the infinity norm of the gradient becomes less than or equal to this value. (3) The maximum number of cubic interpolations allowed is usually 20. (4) The accuracy of the line search is usually 0.1. (5) The number of BFGS corrections kept is usually between 3 and 20.

Example 1: The structure is defined by 4 nodes and 6 strut elements in the shape of a tetrahedron inscribed in a sphere of radius equal to 1. The basis of the tetrahedron is parallel to the xy-plane. The origin of the coordinate system is located at the geometric centroid of the nodes. Table 1 shows the node coordinates and the zero displacement constraints to prevent rigid body movements. The parameters for the node coordinates are given by the following expressions.

Table 1 Node coordinates and displacement constraints
	node
	x
	y
	z
	constraints

	1
	

	

	

	z

	2
	

	

	

	z

	3
	0
	

	

	x, z

	4
	0
	0
	1
	x, y

Each node has an applied force equal to the node's coordinates. This loading will make the tetrahedron expands away from its geometric centroid. Figure 3 shows the initial and final shapes.
[image:]
Figure 3 Initial and final shapes

Table 2 shows the node displacement and the element stress that resulted in the maximum relative errors of 2.5E-06 and 2.6E-06 respectively when compared with ABAQUS.

Table 2 Node displacement and element stress
	Node
	Displ X
		Displ Y
	Displ Z

	2
	2.542243E-01
	-1.467765E-01
	0.000000E+00

	Elem
	Node
	Node
	Stress

	1
	1
	2
	5.353604E-01

Example 2: The structure is defined by 8 nodes and 12 strut elements in the shape of a hexahedron inscribed in a sphere of radius equal to 1. The basis of the hexahedron is parallel to the xy-plane. The origin of the coordinate system is located at the geometric centroid of the nodes. Table 3 shows the node coordinates and the zero displacement constraints to prevent rigid body movements. The parameters for the node coordinates are given by the following expressions.

Table 3 Node coordinates and displacement constraints
	node
	x
	y
	z
	constraints

	1
	

	0
	

	y, z

	2
	0
	

	

	x, z

	3
	

	0
	

	y, z

	4
	0
	

	

	x, z

	5
	

	0
	

	y

	6
	0
	

	

	x

	7
	

	0
	

	y

	8
	0
	

	

	x

Each node has an applied force equal to the node's coordinates. This loading will make the hexahedron expands away from its geometric centroid. Figure 4 shows the initial and final shapes.

[image:]
Figure 4 Initial and final shapes

Table 4 shows the node displacement and the element stress that resulted in the maximum relative errors of 4.6E-06 and 5.6E-06 respectively when compared with ABAQUS.

Table 4 Node displacement and element stress
	Node
	Displ X
	Displ Y
	Displ Z

	8
	0.000000E+00
	3.785512E-01
	5.353523E-01

	Elem
	Node
	Node
	Stress

	1
	1
	2
	8.450264E-01

Example 3: The structure is defined by 6 nodes and 12 strut elements in the shape of an octahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is located at the geometric centroid of the nodes. There are no constraints to prevent rigid body movements. Table 5 shows the node coordinates and, for ABAQUS, the zero displacement constraints to prevent rigid body movements.

Table 5 Node coordinates and displacement constraints
	node
	x
	y
	z
	constraints

	1
	-1
	0
	0
	y, z

	2
	0
	-1
	0
	x, z

	3
	1
	0
	0
	y, z

	4
	0
	1
	0
	x, z

	5
	0
	0
	-1
	x, y

	6
	0
	0
	1
	x, y

Each node has an applied force equal to the node's coordinates. This loading will make the octahedron expands away from its geometric centroid. Figure 5 shows the initial and final shapes.

[image:]
Figure 5 Initial and final shapes

Table 6 shows the node displacement and the element stress that resulted in the maximum relative errors of 1.5E-06 and 1.8E-06 respectively when compared with ABAQUS.

Table 6 Node displacement and element stress
	Node
	Displ X
	Displ Y
	Displ Z

	6
	0.000000E+00
	0.000000E+00
	2.649892E-01

	Elem
	Node
	Node
	Stress

	1
	1
	2
	4.472412E-01

Example 4: The structure is defined by 20 nodes and 30 strut elements in the shape of a dodecahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is located at the geometric centroid of the nodes. There are no constraints to prevent rigid body movements. Table 7 shows the node coordinates and, for ABAQUS, the zero displacement constraints to prevent rigid body movements. The parameters for the node coordinates are given by the following expressions.

Table 7 Node coordinates and displacement constraints
	node
	x
	y
	z
	constraints

	1
	0
	

	

	x

	2
	0
	

	

	x

	3
	

	

	

	

	4
	

	

	

	

	5
	

	

	

	

	6
	

	

	

	

	7
	

	0
	

	y

	8
	

	0
	

	y

	9
	

	

	0
	z

	10
	

	

	0
	z

	11
	

	

	0
	z

	12
	

	

	0
	z

	13
	

	0
	

	y

	14
	

	0
	

	y

	15
	

	

	

	

	16
	

	

	

	

	17
	

	

	

	

	18
	

	

	

	

	19
	0
	

	

	x

	20
	0
	

	

	x

Each node has an applied force equal to the node's coordinates. This loading will make the dodecahedron expands away from its geometric centroid. Figure 6 shows the initial and final shapes. ABAQUS was not able to run this example.

[image:]
Figure 6 Initial and final shapes

Example 5: The structure is defined by 12 nodes and 30 strut elements in the shape of an icosahedron inscribed in a sphere of radius equal to 1. The origin of the coordinate system is located at the geometric centroid of the nodes. There are no constraints to prevent rigid body movements. Table 8 shows the node coordinates and, for ABAQUS, the zero displacement constraints to prevent rigid body movements. The parameters for the node coordinates are given by the following expressions.

Table 8 Node coordinates and displacement constraints
	node
	x
	y
	z
	constraints

	1
	

	0
	

	y

	2
	

	0
	

	y

	3
	0
	

	

	x

	4
	0
	

	

	x

	5
	

	

	0
	z

	6
	

	

	0
	z

	7
	

	

	0
	z

	8
	

	

	0
	z

	9
	0
	

	

	x

	10
	0
	

	

	x

	11
	

	0
	

	y

	12
	

	0
	

	y

There are two loadings: (1) each node has an applied force equal to the node's coordinates and (2) each node has an applied force equal to the negative node's coordinates. These loadings will make the icosahedron expands or shrinks away from its geometric centroid. Figure 7 shows the initial shape on the left and the final shapes on the right.

[image:]
Figure 7 Initial and final shapes

The structure expands. Table 9 shows the node displacement and the element stress that resulted in the maximum relative errors of 2.0E-06 and 2.2E-06 respectively when compared with ABAQUS.

Table 9 Node displacement and element stress
	Node
	Displ X
	Displ Y
	Displ Z

	12
	-1.511947E-01
	0.000000E+00
	-2.446382E-01

	Elem
	Node
	Node
	Stress

	1
	1
	2
	4.898281E-01

The structure shrinks. Table 10 shows the node displacement and the element stress that resulted in the maximum relative errors of 1.6E-06 and 1.4E-06 respectively when compared with ABAQUS.

Table 10 Node displacement and element stress
	Node
	Displ X
	Displ Y
	Displ Z

	1
	-1.183029E-01
	0.000000E+00
	-1.914181E-01

	Elem
	Node
	Node
	Stress

	1
	1
	2
	-2.948178E-01

Example 6: The structure is defined by 468 nodes and 1332 strut elements in the shape of a cylinder with diameter equal to 1 and height equal to 1. The cylinder was divided into 36 equal parts along its circumference and into 12 equal parts along its height. The origin of the coordinate system is located at the geometric centroid of the nodes. The displacements for the nodes located at the top and bottom circumferences were imposed equal to 0. Each node has an applied force equal to the node's coordinates. This loading will make the cylinder expands away from its geometric centroid. The cylinder expands symmetrically while keeping the nodes located at the top and bottom circumferences fixed. Figure 8 shows the initial and final shapes.

[image:]
Figure 8 Initial and final shapes

Table 11 shows the node displacement and the element stress that resulted in the maximum relative errors of 4.0E-06 and 1.4E-05 respectively when compared with ABAQUS.

Table 11 Node displacement and element stress
	Node
	Displ X
	Displ Y
	Displ Z

	208
	-3.383873E-14
	-4.549997E-01
	-4.748185E-02

	Elem
	Node
	Node
	Stress

	470
	37
	73
	1.044470E+00

Example 7: The structure is defined by 468 nodes and 900 strut elements in the shape of a cylinder with diameter equal to 1 and height equal to 1. The cylinder was divided into 36 equal parts along its circumference and into 12 equal parts along its height. The origin of the coordinate system is located at the geometric centroid of the nodes. There are no constraints to prevent rigid body movements. For ABAQUS, the nodes along the yz plane can not move on the x direction, the nodes along the xz plane can not move on the y direction, and the nodes along the middle circumference can not move along the z direction. Each node located at the top and bottom circumferences has an applied force equal to the node's coordinates. This loading will make the top and bottom circumferences expand away from the cylinder's geometric centroid. The final surface is symmetrical about the z-axis. Figure 9 shows the initial and final shapes. ABAQUS was not able to run this example.

[image:]
Figure 9 Initial and final shapes

Conclusions

The results of the examples calculated by the proposed mathematical modeling show five significant digits in agreement when compared with the ABAQUS FEA software. The advantages of using a quasi-Newton method to minimize the total potential energy are: It is not necessary to derive the stiffness matrix expressions; it is not necessary to solve any system of equations; it does not require preventing rigid body motion for self-equilibrated loading. The source and executable computer codes are available for download from http://www.arcaro.org/. The computer code generates a script file for AutoCAD.

References

Buchholdt H. A. (1966) Deformation of prestressed cable-nets. Norwegian Academy of Technological Sciences, Norway.

Coyette J. P. – Guisset P. (1988) Cable network analysis by a nonlinear programming technique. Eng Struct 10:41–46.

Brinkhues S. – Klawonn A. – Rheinbach O. – Schroder J. (2013) Augmented Lagrange methods for quasi-incompressible materials – Applications to soft biological tissue. Int J Numer Meth Bio 29:332–350. doi: 10.1002/cnm.2504.

Hadjicharalambous M. – Lee J. – Smith N. P. – Nordsletten D. A. (2014) A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Comput Method Appl M 274:213–236. doi: 10.1016/j.cma.2014.02.009.

Mustafy T. – El-Rich M. – Mesfar W. – Moglo K .(2014) Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3. J Biomech 47:2891–2903. doi: 10.1016/j.jbiomech.2014.07.016.

Wex C. – Arndt S. – Stoll A. – Bruns C. – Kupriyanova Y. (2015) Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. Biomed Tech (Berl) 60:577–592. doi: 10.1515/bmt-2014-0146.

Goldberg D. (1991) What every computer scientist should know about floating-point arithmetic. ACM Comput Surv 23:5–48. doi: 10.1145/103162.103163.

Kaklamanis C. A. – Spiliopoulos K. V. (2007) A general formulation for large strains hyperelastic trusses. 8th HSTAM International Congress on Mechanics, Patras, Greece.

Bonet J. – Wood R. D. (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edition. Cambridge University Press.

Gill P. E. – Murray W. (1974) Newton type methods for unconstrained and linearly constrained optimization. Math Program 7:311–350. doi: 10.1007/BF01585529.

Nocedal J. – Wright S. J. (2006) Numerical optimization, 2nd edition. Springer-Verlag.

Grancicova I. – Brodniansky J. (2015) Estimation of Young’s modulus of elasticity by the form finding of grid shell structures by the dynamic relaxation method. Slovak Journal of Civil Engineering 23:25–30. doi: 10.1515/sjce-2015-0020.

ABAQUS, Dassault Systemes, (2016) Velizy-Villacoublay, France.

oleObject3.bin

oleObject47.bin

image50.wmf
(

)

Fvvbvv

ddr

=Þ=-

oleObject48.bin

image51.wmf
w

oleObject49.bin

image52.wmf
(

)

Fwwc

ddd

=+

oleObject50.bin

image53.wmf
(

)

Fwwcww

ddr

=Þ=-

oleObject51.bin

image54.wmf
(

)

(

)

TTT

FIzuvvvwww

rr

=++-+-

image4.wmf
l

oleObject52.bin

image55.wmf
F

oleObject53.bin

image56.wmf
(

)

(

)

1

2

2

3

det12

TT

fFuzzz

r

==++

oleObject54.bin

image57.wmf
C

oleObject55.bin

image58.wmf
F

oleObject56.bin

image59.wmf
T

CFF

=

oleObject4.bin

oleObject57.bin

image60.wmf
(

)

2

1

122

TT

ctrCuzzz

r

==+++

oleObject58.bin

image61.wmf
(

)

(

)

2

4

2

122

TTT

ctrCCuzzz

r

==+++

oleObject59.bin

image62.wmf
(

)

(

)

4

3

det12

TT

cCuzzz

r

==++

oleObject60.bin

image63.wmf
y

oleObject61.bin

image64.wmf
(

)

123

,,

ccc

yy

=

image5.wmf
1

d

oleObject62.bin

image65.wmf
y

oleObject63.bin

image66.wmf
C

oleObject64.bin

image67.wmf
i

y

oleObject65.bin

image68.wmf
|1,2,3

i

i

i

c

y

y

¶

==

¶

oleObject66.bin

image69.wmf
a

oleObject5.bin

oleObject67.bin

image70.wmf
w

oleObject68.bin

image71.wmf
f

oleObject69.bin

image72.wmf
elements

fyalw

=-

å

oleObject70.bin

image73.wmf
(

)

elements

fyalw

Ñ=Ñ-Ñ

å

oleObject71.bin

image74.wmf
112233

ccc

yyyy

Ñ=Ñ+Ñ+Ñ

image6.wmf
2

d

oleObject72.bin

image75.wmf
3

2

T

SFF

fC

y

¶

=

¶

oleObject73.bin

image76.wmf
3

12

123

c

cc

CCCC

y

yyy

¶

¶¶

¶

=++

¶¶¶¶

oleObject74.bin

image77.wmf
(

)

1

1

c

ctrCI

C

¶

=Þ=

¶

oleObject75.bin

image78.wmf
(

)

2

2

2

T

c

ctrCCC

C

¶

=Þ=

¶

oleObject76.bin

image79.wmf
(

)

21

3

33

det

c

cCfC

C

-

¶

=Þ=

¶

oleObject6.bin

oleObject77.bin

image80.wmf
12

33

33

24

2

TTT

SFFFFFFfI

ff

yy

y

=++

oleObject78.bin

image81.wmf
(

)

(

)

123

,1

2

ccc

g

yy

=--

oleObject79.bin

image82.wmf
3

12

12

2

c

cc

CCCC

yg

yy

¶

¶¶

¶

=+-

¶¶¶¶

oleObject80.bin

image83.wmf
12

24

TTT

SFFFFFFI

yyg

=+-

oleObject81.bin

image84.wmf
F

image7.wmf
1

x

oleObject82.bin

image85.wmf
(

)

2

3

1

2

1

1

12

TT

f

uzzz

r

=Þ=

++

oleObject83.bin

image86.wmf
(

)

24

12

24

Svv

yryrg

=+-

oleObject84.bin

image87.wmf
v

oleObject85.bin

image88.wmf
24

12

24

syryrg

=+-

oleObject86.bin

image89.wmf
(

)

24

1212

2424

TTT

SFFFFFFI

yyyryr

=+-+

oleObject7.bin

oleObject87.bin

image90.wmf
24

24

12

24

Suu

ll

yryr

ll

ìü

éùéù

æöæö

ïï

=-+-

êúêú

íý

ç÷ç÷

êúêú

èøèø

ïï

ëûëû

îþ

oleObject88.bin

image91.wmf
u

oleObject89.bin

image92.wmf
24

24

12

24

ll

syryr

ll

éùéù

æöæö

=-+-

êúêú

ç÷ç÷

êúêú

èøèø

ëûëû

oleObject90.bin

image93.wmf
2

12

TT

uzzz

l

l

æö

=++

ç÷

èø

oleObject91.bin

image94.wmf
(

)

2

1

2

1

12

TT

uzzz

r

=

++

image8.wmf
2

x

oleObject92.bin

image95.wmf
(

)

(

)

(

)

(

)

1

1

2

2

2

1

212

12

1

412

12

TT

TT

TT

TT

uzzz

uzzz

uzzz

uzzz

s

y

y

=

éù

êú

+++-+

êú

êú

++

ëû

éù

êú

+++-

++

êú

ëû

oleObject93.bin

image96.wmf
C

oleObject94.bin

image97.wmf
(

)

1

1

2

2

12

12

TT

TT

cuzzz

uzzz

=+++

++

oleObject95.bin

image98.wmf
(

)

(

)

3

1

2

1

2

112

TT

c

uzzzuz

d

l

-

éù

¶

=--+++

êú

¶

ëû

oleObject96.bin

image99.wmf
(

)

(

)

3

1

2

2

2

112

TT

c

uzzzuz

d

l

-

éù

¶

=+-+++

êú

¶

ëû

oleObject8.bin

oleObject97.bin

image100.wmf
(

)

(

)

2

2

2

12

12

TT

TT

cuzzz

uzzz

=+++

++

oleObject98.bin

image101.wmf
(

)

(

)

2

2

1

4

1212

TTTT

c

uzzzuzzzuz

d

l

-

¶

éù

=-++-+++

êú

ëû

¶

oleObject99.bin

image102.wmf
(

)

(

)

2

2

2

4

1212

TTTT

c

uzzzuzzzuz

d

l

-

¶

éù

=+++-+++

êú

ëû

¶

oleObject100.bin

image103.wmf
2

TT

uzzz

x

=+

oleObject101.bin

image104.wmf
12

12

111

cc

ddd

y

alyyal

¶¶

¶

æö

=+Þ

ç÷

¶¶¶

èø

image9.wmf
1

x

oleObject102.bin

image105.wmf
(

)

(

)

(

)

12

1

1

1

11

1

221

111

uz

d

x

x

y

alxayyx

xxx

éù

++

êú

ìü

éù

++

¶

ïï

êú

=-++++

êú

íý

¶

êú

+++

êú

ïï

ëû

îþ

êú

ëû

oleObject103.bin

image106.wmf
12

12

222

cc

ddd

y

alyyal

¶¶

¶

æö

=+Þ

ç÷

¶¶¶

èø

oleObject104.bin

image107.wmf
(

)

(

)

(

)

12

2

1

1

11

1

221

111

uz

d

x

x

y

alxayyx

xxx

éù

++

êú

ìü

éù

++

¶

ïï

êú

=+++++

êú

íý

¶

êú

+++

êú

ïï

ëû

îþ

êú

ëû

oleObject105.bin

image108.wmf
(

)

12

1

1

11

1

221

11

x

x

sxyyx

xx

éù

++

êú

ìü

éù

++

ïï

êú

=+++

êú

íý

êú

++

êú

ïï

ëû

îþ

êú

ëû

oleObject106.bin

image109.wmf
(

)

123

,,

ccc

yy

=

oleObject9.bin

oleObject107.bin

image110.wmf
3

12

123

c

cc

CCCC

y

yyy

¶

¶¶

¶

=++

¶¶¶¶

oleObject108.bin

image111.wmf
12

33

33

24

2

TTT

SFFFFFFfI

ff

yy

y

=++

oleObject109.bin

image112.wmf
fy

fyalwal

dd

¶¶

=-Þ=

¶¶

å

oleObject110.bin

image113.wmf
3

12

123

c

cc

f

yyyal

dddd

¶

¶¶

¶

æö

=++

ç÷

¶¶¶¶

èø

oleObject111.bin

image114.wmf
1

4

c

r

dd

¶

=

¶

image10.wmf
2

x

oleObject112.bin

image115.wmf
3

2

8

c

r

dd

¶

=

¶

oleObject113.bin

image116.wmf
(

)

3

3

4

12

TT

c

uzzz

r

dd

¶

=++

¶

oleObject114.bin

image117.wmf
(

)

33

123

4

212

TT

uzzz

fal

yryryr

dd

¶

éù

=++++

ëû

¶

oleObject115.bin

image118.wmf
(

)

(

)

222

1

123

23

02120

212

TT

TT

uzzz

uzzz

y

f

yyryrr

d

yy

-

¶

=Þ++++=Þ=

¶

éù

+++

ëû

oleObject116.bin

image119.wmf
24

12

33

33

24

2

Svfv

ff

yy

rry

æö

=++

ç÷

èø

oleObject10.bin

oleObject117.bin

image120.wmf
v

oleObject118.bin

image121.wmf
24

12

33

33

24

2

f

ff

yy

srry

=++

oleObject119.bin

image122.wmf
(

)

1

2

2

3

12

TT

fuzzz

r

=++Þ

oleObject120.bin

image123.wmf
(

)

(

)

22

123

1

2

2

2120

12

TT

TT

uzzz

uzzz

syyryr

éù

=++++=

ëû

++

oleObject121.bin

image124.wmf
24

12

33

33

24

2

Sufu

ff

yy

ll

y

ll

éù

æöæö

=++

êú

ç÷ç÷

êú

èøèø

ëû

image11.emf
x

1

x

2

l

u

l

u

x

2

x

1

d

1

d

2

x

1

x

2



u



u

x

2

x

1

d

1

d

2

oleObject122.bin

image125.wmf
u

oleObject123.bin

image126.wmf
24

12

33

33

24

2

f

ff

yy

ll

sy

ll

æöæö

=++

ç÷ç÷

èøèø

oleObject124.bin

image127.wmf
(

)

(

)

(

)

1

2

2

3

2

1

23

12

212

TT

TT

uz

fuzzz

uzzz

ll

r

y

r

yy

ü

ï

=+

ï

ï

=++Þ

ý

ï

-

ï

=

ï

éù

+++

ëû

þ

oleObject125.bin

image128.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1

2

23

3

2

223

1

1

2

13

23

212212

412212

212

212

TTTT

TTTT

TT

TT

uzzzuzzz

uzzzuzzz

uzzz

uzzz

s

yy

yyy

y

yy

yy

=

éù

-++++++

ëû

éù

+++++

ëû

-+

++

-

éù

+++

ëû

oleObject126.bin

image129.wmf
2

d

rt

d

==

image12.wmf
21

0

udud

ll

+--=

oleObject127.bin

image130.wmf
4

1

122

TT

cuzzz

t

=+++

oleObject128.bin

image131.wmf
(

)

1

1

2

c

uz

d

l

¶

=-+

¶

oleObject129.bin

image132.wmf
(

)

1

2

2

c

uz

d

l

¶

=++

¶

oleObject130.bin

image133.wmf
3

1

8

c

t

t

¶

=

¶

oleObject131.bin

image134.wmf
(

)

2

8

2

122

TT

cuzzz

t

=+++

oleObject11.bin

oleObject132.bin

image135.wmf
(

)

(

)

2

1

412

TT

uzzz

c

uz

d

l

++

¶

=-+

¶

oleObject133.bin

image136.wmf
(

)

(

)

2

2

412

TT

uzzz

c

uz

d

l

++

¶

=++

¶

oleObject134.bin

image137.wmf
7

2

16

c

t

t

¶

=

¶

oleObject135.bin

image138.wmf
(

)

8

3

12

TT

cuzzz

t

=++

oleObject136.bin

image139.wmf
(

)

8

3

1

2

c

uz

d

t

l

¶

=-+

¶

image13.wmf
(

)

21

dd

z

l

-

=

oleObject137.bin

image140.wmf
(

)

8

3

2

2

c

uz

d

t

l

¶

=++

¶

oleObject138.bin

image141.wmf
(

)

7

3

812

TT

c

uzzz

t

t

¶

=++

¶

oleObject139.bin

image142.wmf
(

)

2

1201

101

10

01

2

0.375

0.125

cc

c

m

ym

m

m

-

=+

=+

=-

oleObject140.bin

image143.wmf
k

oleObject141.bin

image144.wmf
(

)

(

)

2

2

1201

3

101

1

22

cc

f

c

m

k

ym

-

-

=++

oleObject12.bin

oleObject142.bin

image145.wmf
1234

22221

, , ,

333

3

hhhh

====

oleObject143.bin

image146.wmf
1

h

-

oleObject144.bin

image147.wmf
2

h

-

oleObject145.bin

image148.wmf
4

h

-

oleObject146.bin

image149.wmf
1

h

image14.wmf
uuz

lll

=+

oleObject147.bin

image150.wmf
2

h

-

oleObject148.bin

image151.wmf
4

h

-

oleObject149.bin

image152.wmf
3

h

oleObject150.bin

image153.wmf
4

h

-

oleObject151.bin

image154.emf

oleObject13.bin

image155.wmf
12

21

,

33

hh

==

oleObject152.bin

image156.wmf
1

h

-

oleObject153.bin

image157.wmf
2

h

-

oleObject154.bin

image158.wmf
1

h

-

oleObject155.bin

image159.wmf
2

h

-

oleObject156.bin

image15.wmf
12

12

xxx

aa

=+

image160.wmf
1

h

oleObject157.bin

image161.wmf
2

h

-

oleObject158.bin

image162.wmf
1

h

oleObject159.bin

image163.wmf
2

h

-

oleObject160.bin

image164.wmf
1

h

-

oleObject161.bin

oleObject14.bin

image165.wmf
2

h

oleObject162.bin

image166.wmf
1

h

-

oleObject163.bin

image167.wmf
2

h

oleObject164.bin

image168.wmf
1

h

oleObject165.bin

image169.wmf
2

h

oleObject166.bin

image16.wmf
12

1|0

i

aaa

+=³

image170.wmf
1

h

oleObject167.bin

image171.wmf
2

h

oleObject168.bin

image172.emf

image173.emf

image174.wmf
(

)

123

1521

, ,

233

315

hhh

+

===

+

oleObject169.bin

image175.wmf
2

h

oleObject170.bin

oleObject15.bin

image176.wmf
1

h

oleObject171.bin

image177.wmf
2

h

-

oleObject172.bin

image178.wmf
1

h

oleObject173.bin

image179.wmf
3

h

oleObject174.bin

image180.wmf
3

h

oleObject175.bin

image17.wmf
12

12

xddx

aa

=++

image181.wmf
3

h

oleObject176.bin

image182.wmf
3

h

-

oleObject177.bin

image183.wmf
3

h

oleObject178.bin

image184.wmf
3

h

oleObject179.bin

image185.wmf
3

h

-

oleObject180.bin

oleObject16.bin

image186.wmf
3

h

-

oleObject181.bin

image187.wmf
3

h

oleObject182.bin

image188.wmf
3

h

oleObject183.bin

image189.wmf
3

h

-

oleObject184.bin

image190.wmf
3

h

oleObject185.bin

image18.wmf
(

)

2

1

T

uxx

a

l

-

=

image191.wmf
1

h

oleObject186.bin

image192.wmf
2

h

oleObject187.bin

image193.wmf
1

h

-

oleObject188.bin

image194.wmf
2

h

oleObject189.bin

image195.wmf
2

h

oleObject190.bin

oleObject17.bin

image196.wmf
1

h

oleObject191.bin

image197.wmf
2

h

-

oleObject192.bin

image198.wmf
1

h

oleObject193.bin

image199.wmf
2

h

-

oleObject194.bin

image200.wmf
1

h

-

oleObject195.bin

image19.wmf
(

)

1

2

T

uxx

a

l

-

=

image201.wmf
2

h

oleObject196.bin

image202.wmf
1

h

-

oleObject197.bin

image203.wmf
1

h

oleObject198.bin

image204.wmf
2

h

-

oleObject199.bin

image205.wmf
1

h

-

oleObject200.bin

oleObject18.bin

image206.wmf
2

h

-

oleObject201.bin

image207.wmf
3

h

oleObject202.bin

image208.wmf
3

h

oleObject203.bin

image209.wmf
3

h

-

oleObject204.bin

image210.wmf
3

h

-

oleObject205.bin

image20.wmf
x

image211.wmf
3

h

oleObject206.bin

image212.wmf
3

h

-

oleObject207.bin

image213.wmf
3

h

-

oleObject208.bin

image214.wmf
3

h

-

oleObject209.bin

image215.wmf
3

h

-

oleObject210.bin

oleObject19.bin

image216.wmf
3

h

oleObject211.bin

image217.wmf
3

h

-

oleObject212.bin

image218.wmf
3

h

-

oleObject213.bin

image219.wmf
2

h

oleObject214.bin

image220.wmf
1

h

-

oleObject215.bin

image21.emf
l

u

x

1

x

2

x



u

x

1

x

2

x

image221.wmf
2

h

-

oleObject216.bin

image222.wmf
1

h

-

oleObject217.bin

image223.emf

image224.wmf
12

255

,

10

55

hh

+

==

+

oleObject218.bin

image225.wmf
1

h

oleObject219.bin

image226.wmf
2

h

image22.wmf
(

)

22

xxxxu

-=-

oleObject220.bin

image227.wmf
1

h

-

oleObject221.bin

image228.wmf
2

h

oleObject222.bin

image229.wmf
2

h

oleObject223.bin

image230.wmf
1

h

oleObject224.bin

image231.wmf
2

h

-

oleObject20.bin

oleObject225.bin

image232.wmf
1

h

oleObject226.bin

image233.wmf
2

h

oleObject227.bin

image234.wmf
1

h

oleObject228.bin

image235.wmf
2

h

-

oleObject229.bin

image236.wmf
1

h

image23.wmf
2

1

xx

a

l

-

=

oleObject230.bin

image237.wmf
2

h

-

oleObject231.bin

image238.wmf
1

h

-

oleObject232.bin

image239.wmf
2

h

oleObject233.bin

image240.wmf
1

h

-

oleObject234.bin

image241.wmf
2

h

oleObject21.bin

oleObject235.bin

image242.wmf
1

h

-

oleObject236.bin

image243.wmf
2

h

-

oleObject237.bin

image244.wmf
1

h

-

oleObject238.bin

image245.wmf
1

h

oleObject239.bin

image246.wmf
2

h

-

image24.wmf
1

a

oleObject240.bin

image247.wmf
1

h

-

oleObject241.bin

image248.wmf
2

h

-

oleObject242.bin

image249.emf

image250.emf

image251.emf

image1.wmf
u

oleObject22.bin

image25.wmf
2

a

oleObject23.bin

image26.wmf
22

TT

xxuxzduxz

=++-

oleObject24.bin

image27.wmf
i

ijij

j

x

zu

x

d

¶

=+

¶

oleObject25.bin

image28.wmf
F

oleObject26.bin

image29.wmf
i

ijijij

j

x

fzu

x

d

¶

==+

¶

oleObject1.bin

oleObject27.bin

image30.wmf
F

oleObject28.bin

image31.wmf
T

FIzu

=+

oleObject29.bin

image32.wmf
v

oleObject30.bin

image33.wmf
w

oleObject31.bin

image34.wmf
u

image2.wmf
u

oleObject32.bin

image35.wmf
v

oleObject33.bin

image36.wmf
w

oleObject34.bin

image37.wmf
u

oleObject35.bin

image38.wmf
wuv

=´

oleObject36.bin

image39.wmf
wuv

=´

oleObject2.bin

oleObject37.bin

image40.wmf
u

oleObject38.bin

image41.wmf
b

oleObject39.bin

image42.wmf
c

oleObject40.bin

image43.wmf
TTT

FIzubvcw

=+++

oleObject41.bin

image44.wmf
(

)

Fuuzu

llll

=+=

image3.wmf
l

oleObject42.bin

image45.wmf
d

oleObject43.bin

image46.wmf
d

oleObject44.bin

image47.wmf
d

r

d

=

oleObject45.bin

image48.wmf
v

oleObject46.bin

image49.wmf
(

)

Fvvb

ddd

=+

